This article was initially published on I'MTech<\/a>, the scientific and technological news blog of Institut Mines-T\u00e9l\u00e9com<\/a>.<\/em><\/p>\n <\/p>\n A UAV (or drone) in flight can fall victim to different types of attacks. At T\u00e9l\u00e9com SudParis, Alexandre Vervisch-Picois is working on a method for detecting attacks that spoof drones concerning their position. This research could be used for both military and civilian applications.<\/strong><\/p>\n He set out to deliver your package one morning, but it never arrived. Don\u2019t worry, nothing has happened to your mailman. This is a story about an autonomous drone. These small flying vehicles are capable of following a flight path without a pilot<\/a>, and are now ahead of the competition in the race for the fastest delivery.<\/p>\n While drone deliveries are technically possible, for now they remain the stuff of science fiction in France. This is due to both legal reasons and certain vulnerabilities in these systems. At\u00a0T\u00e9l\u00e9com SudParis, Alexandre Vervisch-Picois, a researcher specialized in global navigation satellite systems (GNSS), and his team are working with Thales to detect what is referred to as \u201cspoofing\u201d attacks<\/strong>. In order to prevent these attacks, researchers are studying how they work, with the goal of establishing protocol to help detect them.<\/p>\n In order to move around independently, a drone must know its position and the direction in which it is moving. It therefore receives continuous signals from a satellite constellation which enables it to calculate the coordinates of its position<\/strong>. These can then be used to follow a predefined flight path by moving through a succession of waypoints until it reaches its destination. However, the drone\u2019s heavy reliance on satellite geolocation to find its way makes it vulnerable to cyber attacks. \u201cIf we can succeed in getting the drone to believe it is somewhere other than its actual position, then we can indirectly control its flight path,<\/em>\u201d Alexandre Vervisch-Picois explains. This flaw is all the more critical given that the drones\u2019 GPS receivers can be easily deceived by false signals transmitted at the same frequency as those of the satellites.<\/p>\n This is what the researchers call a spoofing attack. This type of cyber attack<\/a> is not new. It was used in 2011 by the Iranian army to capture an American stealth drone that flew over its border. The technique involves transmitting a sufficiently powerful false radio frequency to replace the satellite signal picked up by the drone<\/strong>. This spoofing technique doesn\u2019t cancel the drone\u2019s geolocation capacities as a scrambler would. Instead, it forces the GPS receiver to calculate an incorrect position, causing it to deviate from its flight path. \u201cFor example, an attacker who succeeds in identifying the next waypoint can then determine a wrong position to be sent in order to lead the drone right to a location where it can be captured,\u201d\u00a0<\/em>the researcher explains.<\/p>\n Several techniques can be used to identify these attacks, but they often require additional costs, both in terms of hardware and energy. Through the DIGUE project<\/a> (French acronym for GNSS Interference Detection for Autonomous UAV)[1] conducted with Thales Six<\/a>, Alexandre Vervisch-Picois and his team have developed a method for detecting spoofing attempts. \u201cOur approach uses the GPS receivers present in the drones, which makes this solution less expensive,<\/em>\u201d says the researcher. This is referred to as the \u201cclock bias\u201d method. Time is a key parameter in satellite position calculations. The satellites have their time base and so does the GPS receiver. Therefore, once the GPS receiver has calculated its position, it measures the \u201cbias\u201d, which is the difference between these two time bases.\u00a0 However, when a spoofing attack occurs, the researchers observed variations in this calculation in the form of a jump. The underlying reason for this jump is that the spoofer has its own time base, which is different from that of the satellites. \u201cIn practice, it is impossible for the spoofer to use the same clock as a satellite. All it can do is move closer to the time base, but we always notice a jump,\u201d<\/em>\u00a0Alexandre Vervisch-Picois explains. To put it simply, satellites and spoofer are not set to the same time.<\/p>\n One advantage of this method is that it does not require any additional components or computing power to retrieve the data, since they are already present in the drone.<\/strong> It also does not require expensive signal processing analyses in order to study the information received by the drone\u2013which is another defense method used to determine whether or not a signal originated from a satellite.<\/p>\n But couldn\u2019t the attacker work around this problem by synchronizing with the satellites\u2019 time setting? \u201cIt is very rare but still possible in the case of a very sophisticated spoofer. This is a classic example of measures and countermeasures, exemplified in interactions between a sword and a shield. In response to an attack, we set up defense systems and the threats become more sophisticated to bypass them,<\/em>\u201d the researcher explains. This is one reason why research in this area has so much to offer.<\/p>\n After obtaining successful results in the laboratory, the researchers are now planning to develop an algorithm based on time bias monitoring. This could be implemented on a flying drone for a test with real conditions.<\/p>\n <\/p>\n [1]<\/a>\u00a0Victor Truong\u2019s\u00a0thesis<\/a>\u00a0research<\/em><\/p>\n <\/div>\n <\/article>\n\n <\/main>\n <\/div>\n <\/div>\n\t<\/div><\/div><\/div>How do you spoof a drone?<\/h2>\n
Resetting the clocks<\/h2>\n
\n\t Detectings attacks on UAVS <\/h1>\n \n\t <\/header>\n \n
<\/div>\n
<\/div>\n
<\/div><\/div><\/div>